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ABSTRACT

It is the purpose of these two reports to demonstrate with

very simple systems, several applications of the optimization theory

of L. S. Pontryagin (1). An attempt to synthesize the control logic

using a modification of dynamic programming is developed,,

Part 1 presents the solution to the minimum time problem and

the minimum fuel problem for a second order system with one zero c

The zero causes discontinuities in the state variables . Control dif-

ficulties are encountered when there are discontinuities in the error

states, but these are alleviated by a transformation to a system with

continuous variables. Optimum control of the transformed system is

then accomplished using the methods of Pontryagin „ The control

action is then related back to the original plant. Although the in-

vestigation is concerned entirely with second order systems , the

methods are sufficiently general to be extended to higher order

systems with zeros. In part II an example of the extension is given,,

Also Part II presents various schemes for the synthesis of optimum

controls

.
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1 . Introduction .

When controlling the performance of a system, it is often desir-

able to choose the control that will minimize errors in the system and

do it in the shortest possible time. A practical matter that must be

considered in the optimization in relation to rapid action is the fact

that control is of a bounded nature. In a great many important cases,

the constraint on the magnitude of the control effort precludes the use

of classical variational techniques to design the controller.

In 1956 Pontryagin hypothesized his "maximum priciple" which

has since been proven a necessary condition for the optimization of

linear systems in relation to rapid action /l/. In solving the mini-

mum time problem for linear systems with bounded control, the

principle leads to a "bang-bang" form of control law. This implies

that the control effort is always being applied at its maximum value.

There remains, however, the task of finding the optimum time to

switch the control. Pontryagin 1

s method leads to a rule for switching

the controller which is a function of the initial conditions in the

system adjoint to the one being controlled. Generally these initial

conditions are difficult to find.

It is usually helpful to consider the control problem using state

space techniques. The coordinates of the space for an n order

system here are a displacement error and its n-1 time derivatives.





The space may be divided into two regions each of which is character-

ized by the control optimal for the trajectories in that region, Optimum

switching between the two conditions of the bang-bang control occur

on the hypersurface dividing the space. The switching criteria can

then be stated as a function of the state space variables.

Of considerable value in finding the switching surface is the sys-

tem adjoint to the system. The adjoint can be thought of as the system

running in reverse time. By plotting trajectories from the origin of the

error phase space "backwards" in time, with the control satisfying the

respective adjoint variables, a surface is generated which may be re-

lated to the optimal switching surface in the system state space

„

A problem of interest occurs when the system is of such a nature

that when control is applied, a discontinuity appears in one or more

of the system states. This may happen when the control is of a bang-

bang form and the forward transmission path of the system contains

zeros. It could also show up if the control is of such a form that it

approximates an impulse to the system. When there are discontinui-

ties in the state space due to switching it is generally no longer

possible to write the switching criteria as a function of the state

space variables.

One alternative might be to switch the control as a function of

time. This may be done effectively when the number of switchings





to reach the origin of the error state space is no more than n-1 in an

n order system. Such a restriction limits one mainly to considering

only those systems with real, distinct eigenvalues. Large disturbances

in lightly damped (oscillatory) systems may require more than n-1

switchings to zero the error states. The most important consideration

when controlling as a function of time is the means of implementing

the switching logic. To accomplish time dependent control, it is vir-

tually mandatory that a digital computer be inserted in the control loop.

Another approach to the problem is to find a system that reacts

identically to the system with zeros except at the points of disconti-

nuity. Control of this parallel system can be stated in terms of the

state space variables. This logic can then be used to switch the

original plant.

This paper will be an investigation into the latter method. The

problem is as follows:

Given a second order oscillatory system with one zero,

find the optimum control for zeroing the errors in the

system in minimum time and for zeroing the errors with

minimum fuel.

The method of Pontryagin is used to solve the problem. The brief

description of the method presented here is based on the work of

Rozonoer /l/.





2. Pontryagin's maximum principle .

Given the system state variables described by n first order

differential equations

i=l,......,n (1)

where x is a column vector in phase space and u is a column con-

*. = f. (x,u,t)

trol vector consisting of r control elements.

The control u(t) must belong to a closed subset U of admissi-

ble controls and must be piecewise continuous. The trajectory x(t)

in the phase space is uniquely determined by (1) when control ujt)

and the initial conditions

x(0) = x° =

x^

x^
n

are given.

The control u(t) of a system may be considered optimum under a

variety of criteria. A large class of optimization problems may be

solved by presenting the criteria in such a way that the solution is

attained by minimizing a linear function of the final value of the state

space variables. A control must be selected from U that will trans-

fer the system (1) from x° to some fixed closed set G of the phase





space such that

n+1

S = L c.x.(T) (3)11

is a minimum. The constants c. and the x . coordinate are chosen
1 n+1

such that minimizing (3) optimizes the system.

In a great many cases optimization of only one of the coordinates

of the system is desired. For example, in order to optimize the mag-

nitude of
T

F(x(t),u(t)) dt
"o

for T and x(T) either fixed or free in a system (1) for u(t)€U, a

new variable is introduced.

Vl =
J
tF (s(t)«u(t))dt (5)

x° _ =
n+1

and another differential equation

*
n+1

= F(x(t), u(t))

is added to (1). The problem of optimizing the integral leads to

optimizing x (T) at t = T.

Minimizing x (T) in the system (1) with x (t) adjoined is

accomplished by putting the problem in functional form (3) and apply-

ing the maximum principle to gain the solution. That is

n+1

S= E ex (T) =* t(T) (t)
i li n+1





is the functional to be minimized. Here it may be seen that c = c_

. . . , c =0 and c , = 1

.

n n+1

A new dependent variable p_(t) is now formed such that

n+1 df (x, u, t)

P,(t) = -Ep -^ i= 1, . , n+1 (7)
i I s dx.

The function

n+1

H = S p f (x, u, t) (8)
. s s

is introduced from which equations (1) and (7) may now be written

dH dH , , . »_»
x = p. = - 1=1/ . ,n+l (9)

l dp. l dx.
l l

The control u*(t) is said to satisfy the maximum condition if

H(x*(t) ,p_*(t) , u*(t)) reaches an absolute maximum at each time t

(0 * t ^ T) where x* (t) and p_*(t) are the values of the variables at

time t with u*(t) c U controlling. For linear systems of the type

discussed in this paper, the necessary and sufficient condition for

n+1

minimizing S = I c.x,(T) optimally with admissible control is that

the control satisfy the maximum condition.

To use the maximum principle , H is formed and maximized with

respect to u(t) . This produces a

u*(t) = (x, pj (10)

which may be used with equations (9) and the boundary conditions

to find _u*(x). If the end point of x(t) is not fixed, it becomes





necessary to obtain boundary conditions on p_(t) in order to arrive at

a solution. The conditions p_(T) may be found using a function

F(x) ^ which describes G and x (T) eG, the end point of an opti-

mum trajectory. The form of p_(T) will be stated without detailed

explanation; however, it may be noticed that at time t = T, p_(T) is

n+1
1

orthogonal to a hyperplane L a.(x. - x, ) = through the endpoint of

the trajectory and directed toward that portion of G where
n+1 n+1

x

S c.x, ^ £ c.x, (T). The coefficients a. may be expressed as a1111 l

1
linear combination of the c. and b.(x (T)), the latter being coeffi-

cients of a hyperplane through x (T) bracketing G.

Thus

p.(T) = -Xc.-Mb.(x
1
(T)) (11)

where X and fi are non-negative numbers one of which may be set

equal to unity as it is only the ratio that is important.

Generally, three situations arise as to final boundary conditions.

(i) If x,(T) are specified for i=l„2, ,m then these

become the boundary conditions for (9).

(ii) If x. (T) are internal points of G for i (1 £ i * n+1)

then b.fac (T)) = and p.(T) = -c.
l^
-

i i

(iii) If x. (T) are boundary points of G for some i (1 £ i^n+1)

then F(x(T)) = and the p.(T) are as in (11).

When F is differentiable , the bracketing hyperplane through





x has coefficients

i^- ox.
1

x. = x
i

1
(T) (12]

If finding the optimum control for minimum transit time another condi-

tion must be fulfilled since T is not fixed beforehand. This condition

is that H(T) = 0.

3 . Development of system equations .

The equation of a second order system with zeros may be written

c + 2Cwc + a>
s
c = a u + a u (13)

where c is the output variable of the system and u is the output of

a controller.

This paper is concerned with control of similar systems that are

purely oscillatory in nature i.e. C = 0. To facilitate ease of com-

putation in the analysis, equation (13) is scaled to

c + c = a u + u (14)

which when written in terms of the Laplace transform of the output

variable becomes
(a s+ l)U(s)

C(s) = —l— (15)
s + 1

This system is represented in block, diagram form in Fig. 1,





Fig. 1 - Block diagram of control system

The response of the system to a step input is investigated more

readily by means of the error variable

e = r - c (16)

If the input r is fed forward as in Fig. 2, the Laplace transform of

the error, given

c(0) = c°

6(0) = c°

R(s) = r /s (17)

becomes

E (s j = (r - c°)s - (c° + airQ ) - (a x s + l)U(s) ^
s
s

+ 1
8)

Now the problem of zeroing the error states reduces to that of zeroing

the error initial conditions in the system.





^ e
CONTROL Ym u ans + 1

s
3+l

c

V-
rxD

s

Fig. 2 - Controlled system with input fed forward

Finally with the introduction of state space variables

ei = -e

(19)

the system equations can be written in vector matrix notation /3/

e =

1- -

1

[— —i

1

-1
_ _

e +

aid + u
_

(20)

4. The minimum time problem.

The problem is stated as follows:

Given the system (20) and a control force of bounded

magnitude |u| ^ 1, find the optimum control _u*(t) to

transfer the state variables from some initial point in

the phase space to the origin of the phase space in

minimum time T.

10





That is , given

e(0) = e°

e(T) =

|u| ^ 1

and the system (20), find u^(t) such that

T

S =
f adt

is a minimum where a. is a positive constant,

Introduce

n+
. = e3 = S =

f
adt

The system equations then become

e =

~0
1 0~

-10 e +

_0 0_

ai u + u

a

(21)

(22)

(23)

(24)

Because of (21) , the functional

3

S = E ce (T) = c3e3 (T) (25)

1

and since we wish to minimize this, c3 = 1 is chosen. e3 (T) is not

limited, hence the boundary condition becomes

PaCT) = -c3 = -l (26)

By (8), the hamiltonian becomes

H = Pie 2 - ps ei + p 2 (aiu + u) + p3a (27)

Since p3 =
-SH
9 e3

= it is evident that p3 is a constant and there-

fore p3 = p3 (T) = -1 and now H is

11





H = Pie 2 - p s ei + Psfeiti + u) - a (28)

which is maximized in u if

aiU+ u = N[sgn p 8 ] (29)

where N = max |aiu + u
|

for each fixed t(0 ^ t £ T) . The control

u*(t) which satisfies these conditions is a "bang-bang" type control

where u = ± 1 at all times and u at the moment of switching is

unbounded

.

Since e3 has served its purpose in the optimization process,

we may now return to the second order system and solve for the

"impulse" variables. By (9),

£ = 1

-1
(3 0)

and the solution for u*(t) becomes

u*(t) = 1 • sgn[cos(t +0)] (31)

where © is a phase angle dependent on x°.

Several properties of the optimum controller are now known.

First, the control is a bang-bang type which applies maximum effort

at all times in one of the two "directions". It is switched periodi-

cally from one state to the other every half cycle until the origin is

reached. Notice that each time the control is switched, a disconti-

nuity appears in the e 2 variable. This occurs because u contains

an impulse.

12





+ +

A e s = (-e! + aiu + u) dt = a x udt = a x [u(t ) - u(t ) J (32)
«!£- j£- S o

S S

where Ae2 is the discontinuity in e% at the time of switching t .

One would now like to find a switching curve L(e) which

divides the phase plane ei vs e% in such a manner that control

u* = +1 is optimum in the space to one side of the curve and u* = -1

elsewhere. Control would be switched when the trajectory e_* (t)

crosses the curve. The discontinuity Ae2 precludes this possi-

bility. For example, examine the trajectory e_*(t) for some initial

conditions that dictate u* = -1 for optimum control. At the point

where this trajectory crosses L(e) the optimum becomes u* = +1.

The control switches and Aes = +2a! occurs which places the states

back in the space where u* = -1 was optimum. Here the control

switches again, Aez = -2ai occurs and chatter motion begins. The

fact that e% is multiple valued at the instant of switching makes a

simple realization of L(e) impossible.

For periods between switchings where u = 0, the system is well

behaved with the solution for the k interval

ej.(t) = K cos (t + 0ic) - 6

(33)

e s (t) = K cos (t + k + it/2)

where 6=1* sgn p 2 and K,0k depend on conditions of states at

the start of the k interval.

13





4. 1 The transformed variable.

The search for a variable of the system on which to control leads

to the possibility of "subtracting out" the discontinuity present in

e 2 at times of switching.

The Laplace transforms of the system variables are

P ,
. efs + ej + frig + 1) U(s)

Ei(s) = sn
„ U \ egs - ef + sfajS + 1) U(s)
£a(s) = 3— —

s + 1

where

which for any instant of time t (0 ^ t < ti)

(34)

U(s) = 6(— - — e
tlS

+ — e
t3S

- .......) (35)
s s s

(37;

U(s) = -|- (36)

Equations (34) then become

P (o s e? s
2
+ (eg + aid) s + 6

Ei(s) =

s (s
3
+ 1)

Ea (s ) = fei
+ ai6) s + (

~ e ° + 6)

s
2
+ 1

By means of the initial value theorem, it is seen that

lim ei (t) = lim sEi (s) = e°

t-0 s^»

lim e 2 (t) = lim sE 2 (s) = eg + a x 6

t-»Q s-* 00

(38)

At time t = 0, e 2 jumps to e 2 + ai6 . To remove this discontinuity

14





consider the transformed variables

Y*(s) = Ei(s)

Y2 (s)=E 2 (s)- ^
By virtue of (39) and (20)

(39)

sYiCs) = sEi(s) =Ea (s) = Y2 (s) +
a x6

sY2 (s) = sE 2 (s) - ai6 = -Yx (s) + -j

or

Y.
=

1

-1
Y.+

1
(41)

where 6 is a unit step function with sign to be determined. The

system (41) is identical to that of (2 0) except for the action at

time of switching. It should be noted, however, that care must be

taken in assigning final values to the system described by (41) if

the two plants are to be controlled in parallel. The final value

theorem and (39) gives

lim y2 (t) = lim sY2 (s) = lim s(E 2 (s) - ^- ) = -a^ (42)

t-» s^O s^O

From this it is observed that zeroing the final states in (20) is

analagous to zeroing yx (T) and attaining a final value

y 2 (T) = -a x6 (43)

in the system (41).

15





4.2 Boundary conditions and final control.

From (38) and (39) it is clear that the initial conditions on

the e and y variables are identical. From (39) it is also seen

that

Yi(T) = ex(T)

(44)

y2 (T) = ea (T) - ai6(T)

At this point in the pursuit of the optimum control, it becomes neces-

sary to investigate the system action possible at time t = T under

admissible control. Ae2 of (32) provides a means of changing the

value of e% instantaneously by an amount dictated by the constraints

on u(t). With this in mind, it is noted that appropriate use of Ae2

within the bounds of allowable control may zero the e 2 variable in

zero time given that es(T) is within range. The conditions (21)

and (44) with (32) indicate that for

|y3 (T)| ^ a x (45)

the system (20) may be zeroed instantly . The boundary conditions

on (41) then become

y.(0) = yj = e° 1-1,2

Yx(T) = (46)

|y2 (T)| ^ ax

The conditions are stated in terms of the y variable for con-

venience in order that notational problems arising from multiple

value of e2 (0) be avoided.

16





The final controller u2 (T) that must zero the errors for t > T

has two conditions imposed upon it i.e. ,

aiu 2 + u2 =

u2 (T)-5(T) = -

(47)

The solution to (47) is

u3 (t) =
"y
a
z(T)

exp (
-^i_

) t * T (48)
ai ai

It is assumed then that u2 (t) is available at time t = T so that the

boundary conditions on the system are as stated in (46).

4.3 Switching functions .

The method of finding a function L (y_) with which to describe

the switching criteria for the optimum trajectory proceeds as follows.

As in the discontinuous case, it is desired that

r
T

S= adt (49)

be minimized, therefore, another variable y3 = S = c3 y3 (T) is

adjoined to the system and once again Cx = c2 =0. The hamiltonian

becomes

H = Piy2 + Pia x6 - p2yx + p 2 6 - a. (5 0)

This is maximized in 6 when

6 = 1 • sgn (a xpi+ p2 ) (51)

With this control, trajectories are circular about (6, -a^) with

17





radius determined by y_°. (See Fig. 3)

6 = -1

- 6 = +l
> direction of

positive time

Fig. 3 yi vs ys phase plane with trajectories for 6 = ± 1
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Previous arguments have determined that the conditions on the

system are

y^O) = y° i= 1,2,3

yi(T) =

|y2 (T)| * a x (52)

H(T) =

PaCD = -i

The function F = — (yl - af ) ^ may be used to describe G.

From this

dF
ba (yi(T)) =

dy2

and

= yi (53)

ys = Yz

pa (T).= -Xc2 - pb»to(D) = -HY2 (54)

where /i *> with modulus such that F(T) = 0. In the phase plane

of Pi vs P2 it is sufficient to note that for trajectories terminating

at y2(T) = -ai, p2 (T) * and for trajectories ending at ya(T) = +ar

P2 (T) ^ 0. This information in addition to the control (51) com-

pletely define L(y_) for trajectories ending on the extremes of the

line segment |y2 (T)
|
* a x .

Fig. 4 depicts representative action for optimum trajectories

terminating at y2 (T) = -a*, yi(T) = 0. Trajectories ending at

y3(T)=+ai, yi(T) = are mirror images. The optimum switching

19





curves are generated by picking arbitrary values of p_(T) from the

admissible set for the corresponding boundary values of y_(t) and

working backwards in time plotting the switching points determined

from p_(-t) on the yi vs Yz phase plane.

20
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For trajectories ending in the interior of the line segment where

|y2 (T) |< ai , b2 (y
1
2(T)) = and, therefore, p 2 (T) = o This com-

pletes the information necessary to describe L(y_). Fig. 5 shows a

representative trajectory arrived at by translating switching criteria

from the p_ - plane to the y_ - plane. Fig. 6 portrays the curve with

all dimensions.

switching curve

Fig. 5 Pi vs p2 and yx vs y2 phase planes with complete switching
curves
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switching curve

Fig. 6 - Optimum switching curve ( minimum time )
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Fig. 7 - Optimum trajectories of e_(t) and y_(t) (minimum time )
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switching curve

trajectories

Fig. 8 - Optimum trajectories of e_(t) and y_(t) (minimum time)
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Fig. 9 - Optimum trajectories of e_(t) and Y.(t) ( minimum time )
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5 . The minimum fuel problem.

The minimum fuel problem is solved by minimizing the integral

r
T

J= (|u| + |a lU |)dt (55)
Jo

in the system (20) where T is not specified. It appears simpler,

however, to once again make use of the transformed variable y_(t)

.

By minimizing

T

J= [
|u|dt (56)

in the transformed system (41), the desired result can be obtained

provided

i) the switchings in the time interval ^ t ^ T are

kept to a minimum.

ii) adjustment is made at time t = T when fuel is

consumed zeroing the error states e_(t) with the

exponential control u2 (T).

After adjoining (56) to the system (41), the hamiltonian

becomes"

H = Piy2 - p2 yi + u(aiPi + p a ) - |u| (57)

Since T is not specified H(t) = 0. With u(t) constrained as

before, the control that maximizes H with respect to _p_(t) is:

u* = 1 • sgn (aiPi + p3 ) |a xPi + p 2 |
> 1

(58)

u* = |aiP! + p 2 |
< 1

24





5. 1 Initial Conditions .

Taking the time derivative of H

dH
, x

du d I u I ,__.— = (aiPl + Ps)
~dt

"
dt

(59)

it can be seen that —— =0 if ~ = 0. It may also be argued that
dt dt

the change in the hamiltonian with time is zero if

d I u

I

A lulam + Ps - ^L-l - -jl-J
(60)

Since u(t) is switching between u= and u= ±1 and vice versa

this means that the hamiltonian remains constant if the control is

switched at ajPx + p 2 = 1 • sgn (Au) , (See Fig. 10).

u* = 1

1P1 + Pa = 1

ax Pi+ p2 = -1

curve

Fig. 10 Switching criteria in px vs p2 phase plane

25





By choosing control u*(t) the hamiltonian remains at its maxi-

mum value i.e. identically zero from time t = after initial control

has been applied until time t = T. This control minimizes the

integral (5 6) but does not necessarily minimize total fuel when fuel

consumed at switchings is added. In order to minimize switchings,

it appears necessary to choose the degenerate case i.e. u =

until such time as aiPi + p s = 1 • sgn (Au) where Au is the change

in u(t) when turning the control on. Notice that this choice

guarantees that H(t) = for all t, ^ t £ T. With this in mind,

the problem remains to minimize fuel in the non-degenerate case.

For this purpose it will be considered that time t = is that time

when

aiPi + p 2 = 1 • sgn (Au) (61)

and initial control is applied.

At t = it may be verified from (61) and because H (0) =

that

Pi°y§ - Pi x? = (62)

5 . 2 Final boundary conditions .

In order to investigate final value boundary conditions, the

optimum trajectories terminating such that yx (T-At)>0 are consi-

dered. Trajectories in the rest of the space are mirror images. As

26





in the minimum time problem, an optimum trajectory terminating at

Ya(T) = -ai,yi(T) = is investigated first. The determination that

Pa(T) ^ as argued in (54) is still valid. This condition on Pa(T)

along with the fact that H(T) = precludes the possibility of a

trajectory terminating as above with u(T) = -1. The following cases,

however, do apply. Consider

H(T) = -diPitt) + u(T) [axPi(T) + p a (T)] - |u(T)
|
- (63)

This condition implies that if u(T) = then p x (T) = and if

u(T) =+1 then Px(T) * and p 2 (T) =+1. Fig. 11 portrays the locus

of admissible points jd(T) and the switching curves generated by

these criteria in the yivsys phase plane are as in Fig. 11a.

admissible
points pjT)

' Fig . 11 Admissible points p_(T) for y3 (T) = -ax
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Fig. 11a Switching criteria for y3 (T) = -a! (minimum fuel)
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Optimum trajectories terminating on the line segment yi(T) =

0, |y2 (T) |< ai must be investigated in a fashion similar to that

used with the minimum time problem. Since a final boundary point

y2(T) is not fixed, we may substitute a final condition on P2(T)

to reach a solution. At this point it becomes necessary to decide

on the final value functional to be minimized. It is first noted

that if the final control to the line segment is u(T) = 0, then

-a 1<y2(T) <0. (It must be remembered that investigation is of

trajectories such that y^T-At^ 0). If u(T) = then also ys(T)
=

e 2 (T) and in order to minimize the fuel consumed by u2 (T) to zero

e2 after time T then |e2 (T)|= |y2 (T)
|
must be minimized.

If the final control is u(T) = -1 (u(T) = +1 is not possible for

trajectories terminating on this side of the line segment) then

©2(1") = y2 (T) - ai and, therefore, |y2(T) - ai |
must be minimized.

In both of the above cases, it may be seen that y2(T) must be

maximized on the line segment in order that fuel consumed by

u2(T) to zero the error states be minimized. Therefore, the functional

to be minimized is

3

S = Ley (T) = -y2(T) + y3 (T) (64)

1

where

p
t

y3 (t) = |u|dt (65)

By prior arguments p 2 (T) = -c2 =+l and p3 (T) = p3 (t) = -c3 = -1

.
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5. 3 Generating the switching curve segments .

It is now helpful to look at the hamiltonian under each of the

above conditions, i.e. , u(T) = and u(T) = -1. In the first case

u(T) =

H(T) = H(t) =

yi(T) = (66)

Pa(T) = +1

-ai<y2 (T)<0

and

H(T) = P!(T)y2 (T) =

which implies that Pi(T) = 0. Fig. 12 shows the switching gener-

ated by this condition.

ys

/

/

'u-0 ,'
/

I
/

+
i

i

;|U=+1

1 I

-1

-ai-

\

\ \

/

u=0

/
/

Yi

Fig. 12 Switching criteria for u(T) = (minimum fuel)
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Next is considered the case where

u(T) = -1

H(T) = H(t)

Yi(T) =

P 3 (T) = + 1

=

(67)

and

from which

H(T) = Pi(T)y2 (T) - l[alPl (T) + 1 ] - 1 =

Pi(T) =
ya(T) - ai

:6s:

Since u(T) = -1 and p 2 (T) = +1, conditions (58) are met only when

-2
Pi(T) < which implies y2(T) >0. In Fig. 13 these trajectories

and switching curves are plotted.

admissible

points p_(T)

Fig. 13 Admissible p_(T) where u(T) = -1
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5 .4 The complete switching curve .

Because T was never specified and because the fuel consumed

at switching was handled as a side condition, a composite of all the

calculated switching curves indicates areas in the phase plane where

criteria for optimum control appear contradictory. In these areas,

analysis by graphical means or actual computation will clear up the

situation. Fig. 14 depicts the composite of the first two criteria

analized.

u = +l

Fig. 13a Switching criteria where u(T) = -1
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In Fig. 14, region A is an area where there is a question con-

cerning whether it is optimum to switch for |y 2 (T)
|
= a x or

|y2 (T)
|
< ai. By graphical analysis, it may be seen that it is opti-

mum to switch so that |ys(T) |
= a x .

A similar contradiction between trajectories switching for

< ys(T) < ai and -a!<y2 (T) < may also be resolved graphically.

The final result consisting of switching criteria to zero the errors

in the system (20) with minimum fuel is given by Fig. 15.

Fig. 14 Region of conflicting optimum criteria

*Appendix I presents computational analysis of the resolving

process.
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Au=0

4iu=0

Fig. 15 Switching criteria for minimum fuel, a x
= 1 .
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6. Realization of control .

With L(y_) providing the switching logic everywhere except

where yi(T) = and |ys(T) |

< a x and with u2 available for final

action, the controller can now be built (theoretically).

Fig. 16 Block diagram of the controlled plant

By subtracting ai6 from e 2 (t) „ the variable y»(t) is gener-

ated for use in control logic (Fig. 16). At time t = T, Sw 2

designates us as the control and errors are instantaneously zeroed,
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The complexity of the logic necessary to implement the switch-

ing criteria may lead one to desire a simpler, quasi-optimum control

„

Two such controls are pictured in Fig. 17 for minimum time problem

„

Although detailed investigation of these controls was not carried

out, it is submitted that both controls are close to optimum especially

for large initial disturbances in the error space. Both controls were

designed with the thought that chatter motion would not be tolerated,

switching function would be linear over a large range, and exponen-

tial control was available at end point of trajectory.

It is further suggested that the system might be controlled on

the error states instead of the transformed variable if constraints are

put on time intervals between switchings so that chatter motion is

avoided.
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7. Conclusions .

The methods used in this paper to arrive at a solution may be

used to good advantage in the investigation of any n order

system with no more than n-1 zeros. The maximum priciple pro-

vides a powerful tool in optimization, particularly for linear systems.

Often the method of Pontryagin will indicate areas of interest to

investigate when searching for an optimum control even if the unique

solution is not readily forthcoming.

The problem of controlling a plant with zeros is analagous to

controlling a plant without zeros using an impulse- step type

controller. Results obtained in this paper can be adapted to formulate

the logic of this type control.

The realization of the true optimum switching logic in a practical

system may in many cases not be worth the effort. Quasi-optimum

control using simple switching functions that are for the most part

linear is a subject for further investigation. Settling time for the sys-

tem is relatively insensitive to limited variations from the optimum

when trajectories are out beyond the first cusp of the switching

curve. The two quasi-optimum controls suggested in this paper

concentrate on avoiding chatter motion. It may be that a control

using "controlled chatter motion" /2/ would be acceptable in parti-

cular systems . This type would be particularly attractive for control
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of trajectories in the area of the first cusp when linear control

functions are desired.
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Appendix I

Graphical analysis of optimum criteria interface

Given y_° in region B of Fig. 16 the problem is to find which

of the two possible switching criteria is optimum, i.e. , whether

for trajectories such that yi(T - At)>0 it is optimum to switch for

0<y2 (T)<a 1 or -a 1 <y2 (T)<0.

Fig. 16 Region of conflicting switching criteria
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Consider ;y on curve 1 of Fig. 16 a distance R from the

origin. Does it take less fuel to apply u{0) = -1 and zero the

corresponding values of e_ or should the degenerate case be

chosen until such time as curve 2 is reached (where y{ = and

Yh = R) and then switch? The fuel consumed when switching from

curve 2 is

ai when control is turned on

T
1- t/2

tt/2 for I |u|dt

a.i when control turned off at yh -

|y2 (T)
|

to zero corresponding e2 (T)

which when totalled is equal to R + tt/2 „

The fuel consumed when switching from curve 1 is

ai when control is turned on

r
T

T for |u|dt

l^i ~ ys(T) |
to zero corresponding e 2 (T)

The time T which is the time for the y_(t) to progress from y_°

at curve 1 to the line segment may be portrayed by use of

as in Fig. 17.

40





d]Pi + Pa = 1

SLlPl + P2= "I

Fig. 17 Time T as a function of X and 2 in £ plane

Here it is remembered that

and that

which implies

Pl(T) =
y^TTi

Pa(T) = +1

aiP? + Pi = -1

T = 01 + 02 + ff/2

H(0) = Pl°yi - pgy? =

Pi = Yi°

:69:

Pa ys

The total fuel from l then is a x + X + 2 + tt/2 + |a x
- y2 and
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the angles 0i and 2 may be related to points in the yi vs ys

space.

0! - tan - -—^- = tan - -—5-
Ps y2

^_ - t^" 1 Pa(T ) _ + - 1 a i ~ Ys
03 = tan - -r-r = tan

(71!

Pi (T)
u""

2

The point at which equal fuel is consumed when switching on curve

1 or curve 2 is that point where

R* = 23l - y2 (T)+ 0!+ 3 (72)

For R > R* optimum switching is on curve 2 .

Computation of an example in the case where ax = 1.0 revealed^

yf = -1.355

Y% = 2.140

yx (T)
= 0.0

yaCT) = 0.347

R* 2.533

Fuel = 4.104
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